Maternal exposure to nanosized titanium dioxide suppresses embryonic development in mice
نویسندگان
چکیده
Although nanoscale titanium dioxide (nano-TiO2) has been extensively used in industrial food applications and daily products for pregnant women, infants, and children, its potential toxicity on fetal development has been rarely studied. The main objective of this investigation was to establish the effects of maternal exposure of nano-TiO2 on developing embryos. Female imprinting control region mice were orally administered nano-TiO2 from gestational day 0 to 17. Our findings showed that Ti concentrations in maternal serum, placenta, and fetus were increased in nano-TiO2-exposed mice when compared to controls, which resulted in reductions in the contents of calcium and zinc in maternal serum, placenta, and fetus, maternal weight gain, placental weight, fetal weight, number of live fetuses, and fetal crown-rump length as well as cauda length, and caused an increase in the number of both dead fetuses and resorptions. Furthermore, maternal nano-TiO2 exposure inhibited development of the fetal skeleton, suggesting a significant absence of cartilage, reduced or absent ossification, and an increase in the number of fetuses with dysplasia, including exencephaly, spina bifida, coiled tail, scoliosis, rib absence, and sternum absence. These findings indicated that nano-TiO2 can cross the blood-fetal barrier and placental barrier, thereby delaying the development of fetal mice and inducing skeletal malformation. These factors may be associated with reductions in both calcium and zinc in maternal serum and the fetus, and both the placenta and embryos may be major targets of developmental toxicity following maternal exposure to nano-TiO2 during the prenatal period. Therefore, the application of nano-TiO2 should be carried out with caution.
منابع مشابه
Protective effect of Nigella sativa on sperm parameters in mice exposed to titanium dioxide during embryonic development
Background and Aim: Nanotechnology is the precise and controlled manipulation of the atomic or molecular structure of nanoscale materials for the preparation of particulate matter with new properties and specific applications. Many in vivo and in vitro studies have shown the negative and destructive effects of nanoparticles on male germ cells.Nanoparticles include primary particles with at leas...
متن کاملProduction of Nanosized Synthetic Rutile from Ilmenite Concentrate by Sonochemical HCl and H2SO4 Leaching
Titanium dioxide is widely used in the manufacturing of paints, varnishes, lacquer, paper, paperboard, printing inks, rubber, floor covering, and ceramics and so on. White titanium dioxide pigment has been produced by two main processes. The sulfate and the chloride processes. Each of these two routes requires different feedstocks. However, economic and environmental pressures are shifting ...
متن کاملMolecular Mechanisms of Nanosized Titanium Dioxide–Induced Pulmonary Injury in Mice
The pulmonary damage induced by nanosized titanium dioxide (nano-TiO2) is of great concern, but the mechanism of how this damage may be incurred has yet to be elucidated. Here, we examined how multiple genes may be affected by nano-TiO2 exposure to contribute to the observed damage. The results suggest that long-term exposure to nano-TiO2 led to significant increases in inflammatory cells, and ...
متن کاملNanosized TiO2-Induced Reproductive System Dysfunction and Its Mechanism in Female Mice
Recent studies have demonstrated nanosized titanium dioxide (nano-TiO2)-induced fertility reduction and ovary injury in animals. To better understand how nano-TiO2 act in mice, female mice were exposed to 2.5, 5, and 10 mg/kg nano-TiO2 by intragastric administration for 90 consecutive days; the ovary injuries, fertility, hormone levels, and inflammation-related or follicular atresia-related cyt...
متن کاملبررسی هیستولوژیکی اثرات نانو دی اکسید تیتانیوم بر روی رشد و نمو جوانۀ اولین دندان آسیاب جنین موش نژاد NMRI در شرایط in vivo
Nowadays, with the applications of titanium dioxide nanoparticles (TiO2-NPs) in pharmacy, food industry, cosmetics, toothpaste and sunscreens, pregnant women are exposed to nanoparticles. Since tooth development is vuln-erable to environmental impacts and mandibular first molar bud develops before maxillary first molar bud, in this ex-perimental study the effects of TiO2-NPs on the development ...
متن کامل